Redis中Redisson布隆过滤器的学习
0浏览
收藏
对于一个数据库开发者来说,牢固扎实的基础是十分重要的,golang学习网就来带大家一点点的掌握基础知识点。今天本篇文章带大家了解《Redis中Redisson布隆过滤器的学习》,主要介绍了布隆过滤器、RedisRedisson,希望对大家的知识积累有所帮助,快点收藏起来吧,否则需要时就找不到了!
简介
本文基于Spring Boot 2.6.6、redisson 3.16.0简单分析Redisson布隆过滤器的使用。
布隆过滤器是一个非常长的二进制向量和一系列随机哈希函数的组合,可用于检索一个元素是否存在;
使用场景如下:
- 解决Redis缓存穿透问题;
- 邮件过滤;
使用
- 建立一个二进制向量,所有位设置0;
- 选择K个散列函数,用于对元素进行K次散列,计算向量的位下标;
- 添加元素:将K个散列函数作用于该元素,生成K个值作为位下标,将向量的对应位设置为1;
- 检索元素:将K个散列函数作用于该元素,生成K个值作为位下标,若向量的对应位都是1,则说明该元素可能存在;否则,该元素肯定不存在;
Demo
依赖
org.springframework.boot
spring-boot-starter-data-redis
io.lettuce
lettuce-core
redis.clients
jedis
org.redisson
redisson
3.16.0
测试代码
public class BloomFilterDemo {
public static void main(String[] args) {
Config config = new Config();
config.useSingleServer().setAddress("redis://127.0.0.1:6379");
RedissonClient redissonClient = Redisson.create(config);
RBloomFilter
bloomFilter = redissonClient.getBloomFilter("bloom-filter");
// 初始化布隆过滤器
bloomFilter.tryInit(200, 0.01);
List
elements = new ArrayList(); for (int i = 0; i bloomFilter, List
elements) { for (int i = 0; i bloomFilter, List
elements) { int counter = 0; for (String element : elements) { if (bloomFilter.contains(element)) { counter++; } } System.out.println(counter); } }
简析
初始化
布隆过滤器的初始化方法tryInit有两个参数:
- expectedInsertions:预期的插入元素数量;
- falseProbability:预期的错误率;
布隆过滤器可以明确元素不存在,但对于元素存在的判断是存在错误率的;所以初始化时指定的这两个参数会决定布隆过滤器的向量长度和散列函数的个数;
RedissonBloomFilter.tryInit方法代码如下:
public boolean tryInit(long expectedInsertions, double falseProbability) {
if (falseProbability > 1) {
throw new IllegalArgumentException("Bloom filter false probability can't be greater than 1");
}
if (falseProbability getMaxSize()) {
throw new IllegalArgumentException("Bloom filter size can't be greater than " + getMaxSize() + ". But calculated size is " + size);
}
// 根据元素个数和向量长度计算得到散列函数的个数
hashIterations = optimalNumOfHashFunctions(expectedInsertions, size);
CommandBatchService executorService = new CommandBatchService(commandExecutor);
executorService.evalReadAsync(configName, codec, RedisCommands.EVAL_VOID,
"local size = redis.call('hget', KEYS[1], 'size');" +
"local hashIterations = redis.call('hget', KEYS[1], 'hashIterations');" +
"assert(size == false and hashIterations == false, 'Bloom filter config has been changed')",
Arrays.asList(configName), size, hashIterations);
executorService.writeAsync(configName, StringCodec.INSTANCE,
new RedisCommand
("HMSET", new VoidReplayConvertor()), configName, "size", size, "hashIterations", hashIterations, "expectedInsertions", expectedInsertions, "falseProbability", BigDecimal.valueOf(falseProbability).toPlainString()); try { executorService.execute(); } catch (RedisException e) { if (e.getMessage() == null || !e.getMessage().contains("Bloom filter config has been changed")) { throw e; } readConfig(); return false; } return true; } private long optimalNumOfBits(long n, double p) { if (p == 0) { p = Double.MIN_VALUE; } return (long) (-n * Math.log(p) / (Math.log(2) * Math.log(2))); } private int optimalNumOfHashFunctions(long n, long m) { return Math.max(1, (int) Math.round((double) m / n * Math.log(2))); }
添加元素
向布隆过滤器中添加元素时,先使用一系列散列函数根据元素得到K个位下标,然后将向量中位下标对应的位设置为1;
RedissonBloomFilter.add方法代码如下:
public boolean add(T object) {
// 根据带插入元素得到两个long类型散列值
long[] hashes = hash(object);
while (true) {
if (size == 0) {
readConfig();
}
int hashIterations = this.hashIterations;
long size = this.size;
// 得到位下标数组
// 以两个散列值根据指定策略生成hashIterations个散列值,从而得到位下标
long[] indexes = hash(hashes[0], hashes[1], hashIterations, size);
CommandBatchService executorService = new CommandBatchService(commandExecutor);
addConfigCheck(hashIterations, size, executorService);
RBitSetAsync bs = createBitSet(executorService);
for (int i = 0; i result = (List
) executorService.execute().getResponses();
for (Boolean val : result.subList(1, result.size()-1)) {
if (!val) {
// 元素添加成功
return true;
}
}
// 元素已存在
return false;
} catch (RedisException e) {
if (e.getMessage() == null || !e.getMessage().contains("Bloom filter config has been changed")) {
throw e;
}
}
}
}
private long[] hash(Object object) {
ByteBuf state = encode(object);
try {
return Hash.hash128(state);
} finally {
state.release();
}
}
private long[] hash(long hash1, long hash2, int iterations, long size) {
long[] indexes = new long[iterations];
long hash = hash1;
for (int i = 0; i
hash(long hash1, long hash2, int iterations, long size)方法中,利用根据元素得到的两个散列值,生成一系列散列函数,然后得到位下标数组;
检索元素
检索布隆过滤器中是否存在指定元素时,先使用一系列散列函数根据元素得到K个位下标,然后判断向量中位下标对应的位是否为1,若存在一个不为1,则该元素不存在;否则认为存在;
RedissonBloomFilter.contains方法代码如下:
public boolean contains(T object) {
// 根据带插入元素得到两个long类型散列值
long[] hashes = hash(object);
while (true) {
if (size == 0) {
readConfig();
}
int hashIterations = this.hashIterations;
long size = this.size;
// 得到位下标数组
// 以两个散列值根据指定策略生成hashIterations个散列值,从而得到位下标
long[] indexes = hash(hashes[0], hashes[1], hashIterations, size);
CommandBatchService executorService = new CommandBatchService(commandExecutor);
addConfigCheck(hashIterations, size, executorService);
RBitSetAsync bs = createBitSet(executorService);
for (int i = 0; i result = (List
) executorService.execute().getResponses();
for (Boolean val : result.subList(1, result.size()-1)) {
if (!val) {
// 若存在不为1的位,则认为元素不存在
return false;
}
}
// 都为1,则认为元素存在
return true;
} catch (RedisException e) {
if (e.getMessage() == null || !e.getMessage().contains("Bloom filter config has been changed")) {
throw e;
}
}
}
}
好了,本文到此结束,带大家了解了《Redis中Redisson布隆过滤器的学习》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多数据库知识!
版本声明 本文转载于:脚本之家 如有侵犯,请联系 删除
- websocket+redis动态订阅和动态取消订阅的实现示例
- 浅谈Redis的异步机制
